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Abstract

Ž .In this Letter, we present a criticism of the use of the non-linear least-squares fitting methods, as well as the so-called
double-reciprocal plots, for determination of the stoichiometry and equilibrium constants of reactions involving weak
complex formations. We show that, contrary to what is generally believed, these methods do not always suggest the correct
parameters of such reactions. In particular, differentiation between 1r1 and 2r1 stoichiometries is impossible in many cases.
The reason is that, in these cases, the fitting equations corresponding to the 1r1 and 2r1 stoichiometries turn out to be
equivalent. Additional independent experimental evidence is therefore necessary in order to obtain reliable values for the
complexation parameters. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Among weak complexation reactions and forma-
tion of inclusion compounds, the most frequently
encountered situations in real systems involve 1r1

w xand 2r1 stoichiometries 1–11 . These non-covalent
bindings between reactants A and B are described by

Ž .Eq. 1 for the 1r1 stoichiometry, and by the combi-
Ž . Ž .nation of Eq. 1 with Eq. 2 for the 2r1. K and1

K stand for the corresponding equilibrium con-2

stants.
K1

AqB | AB , 1Ž .
K2

ABqA | A B . 2Ž .2

The progress of such reactions can be monitored
by means of the experimentally determined value of
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some spectroscopic variable P of one of the reac-
Ž .tants, say B, according to Eq. 3 for the 1r1 and

Ž . w xEq. 4 for the 2r1 11 .

w xP qK P AŽ .f 1 1
Ps , 3Ž .w x1qK AŽ .1

2w x w xP qK P A qK K P AŽ .f 1 1 1 2 2
Ps . 4Ž .2w x w x1qK A qK K AŽ .1 1 2

Ž . Ž .In Eqs. 3 and 4 P , P and P indicate the valuef 1 2
Ž . Ž . Ž .of P, P when B is unbound free , P when B isf 1

Ž .bound to A as AB and P when B partakes in the2
w x2r1 complex A B. A stands for the molar concen-2

tration of species A. In this kind of study one keeps
the concentration of reactant B constant and mea-
sures P as a function of added A. The experimental
data can be subsequently used to fit them to the

Ž . Ž .corresponding Eqs. 3 and 4 , and thus determine
the parameters K and K . Note that P can be any1 2
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convenient spectroscopic quantity depending on the
nature of species B, e.g. fluorescence quantum yield
Ž . Ž . Ž .F , absorption coefficient ´ , chemical shift d ,
etc.

In the course our current studies on the formation
Ž .of inclusion compounds between cyclodextrins CD

and the fluorophore all-trans-1,6-diphenyl-1,3,5-
Ž .hexatriene DPH , we have found that in some cases
Ž . Ž .either Eq. 3 or Eq. 4 could be equally well fitted

w xto the experimental data, viz. F of DPH vs. CD ,
the fits were equally good, indicating that the stoi-
chiometry of the complexation reaction could be
either 1r1 or 2r1. From independent experiments,
however, such as fluorescence lifetime measure-
ments, we were able to determine the correct, unique
stoichiometry of the reaction. These findings

Ž . Ž .prompted us to examine Eqs. 3 and 4 , i.e. to
investigate the conditions under which these two
equations become equivalent. This would explain

Ž . Ž .why fitting the different Eq. 3 and 4 , to the same
set of data produces equally good fittings.

2. Results and discussion

2.1. Mathematical treatment

Our purpose was to determine the conditions un-
Ž . Ž .der which Eqs. 3 and 4 become equivalent. This

Ž . Ž .means that if we write Eq. 3 as Eq. 5 ,

w x w xP qK P A LqM Af 1 1
Ps s , 5Ž .w x w x1qK A 1qN A1

Ž .where L, M and N are constants, then Eq. 4 will
Ž .be equivalent with Eq. 5 if the right-hand sides of

both equations are identical, viz.
2w x w x w xLqM A P qK P A qK K P Af 1 1 1 2 2

s . 6Ž .2w x1qN A w x w x1qK A qK K A1 1 2

Using straightforward algebraic manipulations and
w xseparation of terms of equal powers of A , the above

Ž .identity 6 takes the following form:
2w x w xLq K LqM A qK LK qM AŽ . Ž .1 1 2

3w x w xqMK K A sP q K P qP N AŽ .1 2 f 1 1 f

2 3w x w xqK K P qP N A qK K P N A .Ž .1 2 2 1 1 2 2

7Ž .

w xSetting identical the terms of equal powers of A in
Ž . Ž .the above identity 7 we come up with Eq. 8 for

L, M and N.

LsP from the identity of the coefficients of the zeroŽf

w xpowers of A on both sides of 7 8Ž . Ž ..
MsP N from the identity of theŽ2

w xcoefficients of the third powers of A .
NsK P yP r P yP from the identity ofŽ . Ž . Ž1 1 f 2 f

w xthe coefficients of the first powers of A ..
Ž .However, the identity 7 will be valid only if the

w xcoefficients of the second powers of A are also
Ž .identical on both sides of 7 , i.e.

K LK qM sK K P qP N . 9Ž . Ž . Ž .1 2 1 2 2 1

Ž .Finally, substituting L, M and N from Eq. 8 into
Ž . Ž .Eq. 9 we obtain the interesting Eq. 10 ,

2K P yPŽ .1 2 f
s , 10Ž .

K P yP P yPŽ . Ž .2 1 f 2 1

which interrelates the experimental parameters K ,1
Ž .K , P , P , P . Clearly, whenever Eq. 10 is satis-2 f 1 2

Ž . Ž .fied Eqs. 3 and 4 are equivalent and therefore
Ž Ž ..computer fitting of either model 1r1 Eq. 3 , or

Ž Ž ..model 2r1 Eq. 4 , to the experimental data will
give equally good fits. Consequently, any conclusion
about the nature of a complexation reaction, viz.,
stoichiometry and values of parameters, is rendered
unreliable.

Ž .Eq. 10 deserves further investigation. Thus, we
firstly note that the value of the parameter P whichf

Ž .corresponds to the unbound free species B, is
independent of the complexation reaction; therefore
this parameter can be always treated as a constant for
any particular complex formation. Secondly, solving

Ž .the quadratic Eq. 10 for P or P , with P as-1 2 f

sumed constant, we find that P and P have posi-1 2
Ž .tive real non-imaginary values only when K rK1 2

Ž . Ž .G4. The behavior of Eq. 10 is shown Fig. 1 in
the 3-D depiction of the surface generated by this
equation for P s0.1. Note that only the upper partf

of this surface represents realizable experimental sit-
uations, because only this part of the surface corre-
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Ž . Ž . Ž .Fig. 1. 3-D graph of Eq. 10 . The upper part of this surface corresponds to combinations of K rK , P F and P F which satisfy Eq.1 2 1 1 2 2
Ž . Ž .10 and also to experimentally realizable situations, viz., positive and real values of the parameters see text . Points A, B, C indicate the

Ž . Ž . Ž .parameters, K rK , P F and P F for the corresponding synthetic data see Fig. 2 .1 2 1 1 2 2

sponds to K rK G4. Thirdly, the algebraic expres-1 2
Ž .sion of Eq. 10 is such that the part of the surface

for K rK G4, corresponds to both cases, either1 2

P )P )P , or P -P -P . The former case isf 1 2 f 1 2

realized when addition of A reduces the magnitude
of the parameter P, e.g. fluorescence quenching,
while the latter when addition of A increases the
magnitude of P.

2.2. Computer simulations

In the following we will show, by means of
Ž .synthetic data, that whenever Eq. 10 is satisfied it

is indeed impossible to differentiate between the 1r1
and the 2r1 models. To simplify matters, we will
employ a specific example, viz., the case of complex
formation between a cyclodextrin and DPH, while as
P we will take the fluorescence quantum yield F of

w xDPH. From our earlier studies 12 , we know that
when CD is added to a waterrglycol solution of
DPH the fluorescence quantum yield of the latter
increases, therefore we have the case F -F -Ff 1 2
Ž .P -P -P in the previous notation . Our syn-f 1 2

thetic data, which consists of calculated values of F

at various CD concentrations, was produced by means
Ž .of Eq. 4 corresponding to the 2r1 model. In Eq.

Ž . w x w x4 we have replaced A by CD and P , P , P byf 1 2

F , F , F respectively, in all simulated data Ff 1 2 f

was taken equal to 0.1. To this synthetic data, which
corresponds to the 2r1 model, we tried to fit both

Ž . Ž .Eq. 3 for the 1r1 and Eq. 4 for the 2r1 model.
For this reason we have chosen three examples
corresponding to points A, B and C in Fig. 1. Points
A and B lie on the upper part of the surface of Eq.
Ž . Ž .10 , i.e. Eq. 10 is satisfied, and according to the
previous discussion distinction between the two
models 1r1 and 2r1 should be impossible. Point C,
on the other hand, lies way above the surface, i.e.

Ž .Eq. 10 is not satisfied, and therefore distinction
between the two models should be feasible.

Inspection of Fig. 2, which shows the 1r1 and
2r1 computer fits to the synthetic data obtained
using the 2r1 model, confirms that for the data
corresponding to points A and B, which satisfy Eq.
Ž . Ž . Ž .10 , both Eqs. 3 and 4 can be equally well fitted
Ž .panels A and B in Fig. 2 . This confirms that it is
impossible to determine the correct stoichiometry
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Ž .Fig. 2. Open circles are synthetic data obtained from Eq. 4 corresponding to model 2r1. Solid lines indicate computer fits to these
Ž . Ž . Ž .synthetic data, by the 1r1 model left panels and the 2r1 model right panels . The parameters used to obtain the synthetic data are: A

Ž . Ž .K rK s4, F s0.425, F s0.75; B K rK s26, F s0.12, F s0.6; and C K rK s4.16, F s0.4, F s0.6, in all cases1 2 1 2 1 2 1 2 1 2 1 2

F s0.1. Parameters obtained from the fits, and values of R2, are indicated on each panel.f

Ž .when Eq. 10 is satisfied. On the contrary, the data
corresponding to point C, which does not satisfy Eq.
Ž . Ž . Ž10 , can only be fitted by Eq. 4 panels C in Fig.
. Ž .2 , therefore in such cases, viz., when Eq. 10 does

not hold, the determination of the stoichiometry and
of the equilibrium parameters is attainable.

Now a problem arises because one cannot deter-
Ž .mine whether Eq. 10 is satisfied unless one has
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already determined the equilibrium parameters, viz.,
K ’s and F ’s. The only way to escape from this
vicious circle is to try to determine the stoichiometry
of the complexation reaction by other, non-computa-

tional, direct methods. In our studies, we were able
to overcome the above difficulty and determine the
stoichiometry of the complexation reactions between
CD and DPH, by analyzing the fluorescence decay

Fig. 3. Double-reciprocal plots of synthetic data A, B and C. The parameters used to obtain the synthetic data are the same as in the
corresponding panels of Fig. 2.
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of DPH at several cyclodextrin concentrations. In
these experiments, when the stoichiometry is 1r1
only two lifetimes are observed, one due to the
unbound DPH and the other due to the CD–DPH

w xcomplex. Moreover, as the added CD is increased,
and more CD–DPH is formed, the percentage of the
DPH corresponding to the first lifetime decreases
while the percentage of the second lifetime increases.
If the stoichiometry is instead 2r1, then three fluo-
rescence lifetimes are observed, viz., the previous
two and that of the CD –DPH complex. Our results2

of these studies will be published elsewhere.

2.3. Double-reciprocal plots

Ž . Ž ..It is customary instead of fitting Eqs. 3 and 4
to the experimental data, to employ what is called
double-reciprocal plot methods. In these methods, of

w xwhich the Benesi–Hildebrand 13 is the oldest but
also the most frequently used one, use is made of the

Ž . Ž . w xlinear equivalent of Eq. 3 which is Eq. 11 14 :

1 1 1
s q . 11Ž .w xFyF K F yF CD F yFŽ .f 1 1 f 1 f

Ž . w x ŽEvidently, plotting 1r FyF versus 1r CD , orf
Ž . w x.more generally 1r PyP versus 1r A , a straightf

line results if the stoichiometry of the reaction is
1r1, otherwise the experimental points deviate from
linearity. Moreover, if the stoichiometry is 1r1, the

Ž .slope of the straight line is equal to 1rK F yF ,1 1 f
Ž .while its intercept with the axis of 1r FyF isf

Ž .1r F yF and it is therefore possible to deter-1 f

mine the equilibrium constant K . There are numer-1

ous occasions in the recent literature where such
convenient double-reciprocal plots have been used
w x3,4,6,7,9–11,14–16 . In view of our previous dis-
cussion, it is expected that the methods of these
double-reciprocal plots should also break down when

Ž .Eq. 10 is satisfied. This is true as demonstrated in
Fig. 3 which shows the double-reciprocal plots corre-
sponding to the synthetic data of Fig. 2. Thus, the
simulated data of points A and B, although they were

Ž .obtained by means of Eq. 4 of the 2r1 model,
nevertheless produce perfectly straight lines, erro-
neously suggesting 1r1 stoichiometry. The reason is

Ž .that in these cases Eq. 10 is satisfied. This is not,

however, the case with the simulated data of point C,
Ž .for which Eq. 10 is not satisfied. In this case, the

non-linearity of the double-reciprocal plot clearly,
and correctly, suggests a stoichiometry different from
1r1. It should be emphasized here that in the present
discussion we have dealt with the theoretical aspects
of the method of the double-reciprocal plots. In real
experimental situations, however, where usually only
few points are measured in a rather restricted con-
centration range and where experimental uncertain-
ties are not negligible, deviation from linearity of
double-reciprocal plots is a rather doubtful criterion,
which nevertheless is used in the literature very often
w x3,4,6,7,9–11,14–16 .

Finally, it should be mentioned that contrary to
the 2r1 stoichiometry, equations corresponding to
the 2r2 stoichiometry cannot be reduced either to
the equations for 1r1 or 2r1 stoichiometries, be-
cause the latter two do not depend on the concentra-

w x Ž Ž .tion of the second reactant, viz., B see Eqs. 3 and
Ž ..4 , while equations for the 2r2 stoichiometry do

w xdepend on B . As for higher stoichiometries, e.g.
2r3, 3r3, etc., these are very unusual and therefore
they have no practical interest.

3. Conclusions

The important conclusion of this Letter is that, in
weak complexation reactions differentiation between
1r1 and 2r1 stoichiometries, by means of computer
fitting methods or double-reciprocal plot techniques,
is not always possible. More specifically, when Eq.
Ž .10 is satisfied one cannot distinguish, by the above
methods, whether the reaction is a 1r1 or a 2r1
process. Moreover, since confirmation of the validity

Ž .of Eq. 10 for a particular reaction requires previous
knowledge of all the parameters involved in Eq.
Ž .10 , i.e. requires complete knowledge of the nature
of the reaction, it is impossible to know in advance

Ž .whether or not Eq. 10 is satisfied and therefore
whether or not differentiation between the two stoi-
chiometries, 1r1 and 2r1, is feasible. Consequently,
it is imperative that direct methods, e.g. determina-
tion of fluorescence lifetimes, be employed in order
to determine the stoichiometry unambiguously. Simi-



( )G. Pistolis, A. MalliarisrChemical Physics Letters 303 1999 334–340340

lar confusion between 2r2 and 1r1 or 2r1 stoi-
chiometries does not occur.
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